CSCC69 Week 13 Notes

Lecture Notes:
- Mobile OS:
- History of mobile OSes:

- Early smart devices are PDAs (touchscreen, Internet).

- Symbian is the first modern mobile OS. It was released in 2000 and ran in
Ericsson R380, the first “smartphone" (mobile phone + PDA). It only supported
proprietary programs.

- Many smartphone and mobile OSes followed after:

- Palm OS (2001)
- Windows CE (2002)
- Blackberry (2002)
- Introduction of iPhone (2007) < This was a game changer
It had 4GB flash memory, 128 MB DRAM, and multi-touch interface.
Originally, it only ran iOS proprietary apps but the App Store opened in
2008 and allowed third party apps.
- Design considerations for mobile OS:
- Resources are very constrained:
- Limited memory
- Limited storage
- Limited battery life
- Limited processing power
- Limited network bandwidth
- Limited size
- User perception are important: Latency > throughput.
Users will be frustrated if an app takes several seconds to launch.
- The environment is frequently changing. Cellular signals change from strong to
weak and then back to strong.
- Process management in mobile OS:
- On a desktop/server, an application = a process. This is not true on mobile OSes.

On mobile OSes:

- When you see an app present to you it does not mean an actual process

is running.

- Multiple apps might share processes.

- An app might make use of multiple processes.

- When you close an app, the process might be still running.

- Multitasking is a luxury in mobile OS.

- Early versions of iOS did not allow multi-tasking mainly because of battery life
and limited memory.

- Only one app runs in the foreground. All the other user apps are suspended.

- The OS's tasks are multi-tasked because they are assumed to be well-behaving.
Starting with iOS 4, the OS APIs allow multitasking in apps but are only available
for a limited number of app types.

- Memory management in mobile OS:

- Most desktop and server OSes today support swap space.

- Mobile OSes typically do not support swapping.

- iOS asks applications to voluntarily relinquish allocated memory.

- Android will terminate an app when free memory is running low.

- App developers must be very careful about memory usage.

CSCC69 Week 13 Notes

Storage in mobile OS:
- App privacy and security is hugely important in mobile devices.
- Each app has its own private directory that other apps cannot access.
- The only shared storage is external storage.
Android:
- History of Android:
- Android Inc was founded by Andy Rubin et al. in 2003.
- The original goal is to develop an OS for a digital camera.
- Later, the focus shifted on Android as a mobile OS.
- Android was later bought by Google.
- Originally, no carrier wanted to support it except for T-Mobile. While
preparing for the public launch of Android, the iPhone was released.
- Android 1.0 was released in 2008 (HTC G1).
- In 2019, Android has ~87% of the mobile OS market while iOS has ~13%.
- Android OS stack:

System Apps.

Dialer Email Calendar Camera

Content Providers iarkacin
Activity Location Package Notification

Native C/C++ Libraries
‘Webkit OpenMax LibC
Media OpenGL

Hardware Abstraction Layer (HAL)
Audio Bluetooth Camera Sensors

Linux Kernel
Drivers

Audio Binder Display Keypad Camera

Shared Memory usB WIFI Bluetooth

Power Manaaement

- Linux kernel vs. Android kernel:
- The Linux kernel is the foundation of the Android platform.
- However, there are a few tweaks:
- binder - interprocess communication mechanism
- shmem - shared memory mechanism
- logger
- Android runtime:
- Runtime: A component provides functionality necessary for the execution
of a program.
E.g. scheduling, resource management, stack behavior, etc
- Prior to Android 5.0 (Dalvik):
- Each Android app has its own process, runs its own instance of
the Dalvik virtual machine (process virtual machine).
- The VM executes the Dalvik executable (.dex).
- The Dalvik virtual machine is register-based compared to
stack-based of a JVM.
- After Android 5.0 (ART):
- Backward compatible for running Dex bytecode.
- New feature - Ahead-Of-Time (AOT) compilation.
- Improved garbage collection.

CSCC69 Week 13 Notes

Android process creation:

- All Android apps derive from a process called Zygote.

- Zygote is started as part of the init process.

- It preloads Java classes, resources, and starts the Dalvik VM.

- It registers a Unix domain socket.

- It waits for commands on the socket.

- It forks off child processes that inherit the initial state of VMs. It uses
Copy-on-Write only when a process writes to a page will a page be
allocated.

Java API framework:

- The main Android OS from app point of view.

- It provides high-level services and environment to apps.

- ltinteracts with low-level libraries and Linux kernels.

- Some components:

- Activity Manager - manages the lifecycle of apps.
- Package Manager - keeps track of apps installed.
- Power Manager - wakelock APIs to apps.

Native C/C++ libraries:

- Many core Android services are built from native code.

- They require native libraries written in C/C++.

- Some of them are exposed through the Java API framework as native
APIls such as the Java OpenGL API

Android Binder IPC:

- Android Binder IPC allows communication among apps, between system

services, and between app and system service.

System
Server { com.foo.app1 J [com.bar.app2

| N /
S ldevbinder —

Linux Kernel

Service Manager

&

Applications
IPC IPC

l— IPC IPC —1
{ Content
Home (Cuntac!) (Phone) (Browser) (mede{)
Q”‘L
Activity Window Vibrator WiFi Battery
Service Service Service Service Service

Package Telephony 1 Resource Location Notification
Service Service Manager Manager Service

JNI
&
IPC
Native Layer
Surface Media Android
Dalvik
(ioope)
System
Calls
Linux Kernel
Display Camera ik GPS Binder
Driver Driver Driver Driver

Driver Driver Driver Driver

CSCC69 Week 13 Notes

- Binder is implemented as an RPC:
1. Developer defines methods and object interface in an .aidl file.
2. Android SDK generates a stub Java file for the .aidl file and exposes the
stub in a Service.

3. Developer implements the stub methods.
4. Client copies the .aidl file to its source.
5. Android SDK generates a stub (a.k.a proxy).
6. Client invokes the RPC through the stub.
- Binder information flow:
Method Invocation Method Implementation
Developer (at client side) (provided by developer)
P Java Proxy Class Java Stub Class
Library (generate:{)y AIDL) (generated by AIDL)
android.os.IBinder:transact() ‘ \ android.os.Binder-onTransact() \
Framework i i
| android.os.BinderProxy:transactNative() H android.os.Parcel H android.os.Binder:execTransact() ‘
””””””””””””””””””””””””””””””” Upcalltoprocess VM |
Kernel | /devibinder Kernel Module |
OS Security:
Protection:

- File systems implement a protection system:
- Who can access a file?
- How can they access it?
- Aprotection system dictates whether a given action performed by a given subject
on a given object should be allowed.
E.g. You can read and/or write your files, but others cannot.
E.g. You can read "/etc/motd", but you cannot write it.
DAC vs MAC:
- DAC (Discretionary Access Control): Users define their own policy on their
own data.
- MAC (Mandatory Access Control): The administrator defines a system level
policy to control the propagation of data between users.
- DAC and MAC are not exclusive and can be used together.
Discretionary Access Control:
- Unix protection on files:
- Each process has a User ID and one or more group IDs.
- The system stores the following with each file:
- The user who owns the file and the group the file is in.
- Permissions for users, any one in the file group, and other.
- This is shown by the output of the "Is -I" command.
- Unix protection on directories:
- Directories have permission bits, too.
- The write permission on a directory allows users to create or delete a file.
- The execute permission allows users to use pathnames in the directory.
- The read permission allows users to list the contents of the directory.
- The special user root (UID 0) has all privileges. It is required for
administration.

CSCC69 Week 13 Notes

Unix permissions on non-files:

Setuid:

Many devices show up in the file system.
E.g. /dev/ity1
They have permissions just like for files. However, other access controls
are not represented in the file system.
E.g. You must usually be root to do the following:
- Bind any TCP or UDP port number less than 1024.
- Change the current process’s user or group ID.
- Mount or unmount most file systems.
- Create device nodes (such as /dev/tty1) in the file system.
- Change the owner of a file.
- Set the time-of-day clock; halt or reboot machine.

Some legitimate actions require more privileges than UID.

E.g. how users change their passwords stored in root-owned /etc/passwd
and /etc/shadow files?

The solution is the setuid and setgid programs.

Run with privileges of the file's owner or group.

Each process has a real and effective UID/GID.

Real is a user who launched the setuid program.

Effective is the owner/group of the file, used in access checks.

Have to be very careful when writing setuid code.

Attackers can run setuid programs any time (no need to wait for root to
run a vulnerable job).

Attacker controls many aspects of the program's environment.

Unix security hole: Even without root or setuid attackers can trick root owned
processes into doing things.

- Mandatory Access Control:

Mandatory access control (MAC) can restrict propagation.

E.g. A security administrator may allow you to read but not disclose the file.

MAC prevents users from disclosing sensitive information whether accidentally or
maliciously.

E.g. Classified information requires such protection.

MAC prevents software from surreptitiously leaking data. Seemingly innocuous
software may steal secrets in the background (Trojan Horse).

