
CSCC69 Week 13 Notes
1

Lecture Notes:
- Mobile OS:
- History of mobile OSes:

- Early smart devices are PDAs (touchscreen, Internet).
- Symbian is the first modern mobile OS. It was released in 2000 and ran in

Ericsson R380, the first “smartphone" (mobile phone + PDA). It only supported
proprietary programs.

- Many smartphone and mobile OSes followed after:
- Palm OS (2001)
- Windows CE (2002)
- Blackberry (2002)
- Introduction of iPhone (2007) ← This was a game changer

It had 4GB flash memory, 128 MB DRAM, and multi-touch interface.
Originally, it only ran iOS proprietary apps but the App Store opened in
2008 and allowed third party apps.

- Design considerations for mobile OS:
- Resources are very constrained:

- Limited memory
- Limited storage
- Limited battery life
- Limited processing power
- Limited network bandwidth
- Limited size

- User perception are important: Latency ≫ throughput.
Users will be frustrated if an app takes several seconds to launch.

- The environment is frequently changing. Cellular signals change from strong to
weak and then back to strong.

- Process management in mobile OS:
- On a desktop/server, an application = a process. This is not true on mobile OSes.
- On mobile OSes:

- When you see an app present to you it does not mean an actual process
is running.

- Multiple apps might share processes.
- An app might make use of multiple processes.
- When you close an app, the process might be still running.

- Multitasking is a luxury in mobile OS.
- Early versions of iOS did not allow multi-tasking mainly because of battery life

and limited memory.
- Only one app runs in the foreground. All the other user apps are suspended.
- The OS's tasks are multi-tasked because they are assumed to be well-behaving.

Starting with iOS 4, the OS APIs allow multitasking in apps but are only available
for a limited number of app types.

- Memory management in mobile OS:
- Most desktop and server OSes today support swap space.
- Mobile OSes typically do not support swapping.
- iOS asks applications to voluntarily relinquish allocated memory.
- Android will terminate an app when free memory is running low.
- App developers must be very careful about memory usage.



CSCC69 Week 13 Notes
2

- Storage in mobile OS:
- App privacy and security is hugely important in mobile devices.
- Each app has its own private directory that other apps cannot access.
- The only shared storage is external storage.

- Android:
- History of Android:

- Android Inc was founded by Andy Rubin et al. in 2003.
- The original goal is to develop an OS for a digital camera.
- Later, the focus shifted on Android as a mobile OS.
- Android was later bought by Google.
- Originally, no carrier wanted to support it except for T-Mobile. While

preparing for the public launch of Android, the iPhone was released.
- Android 1.0 was released in 2008 (HTC G1).
- In 2019, Android has ~87% of the mobile OS market while iOS has ~13%.

- Android OS stack:

- Linux kernel vs. Android kernel:
- The Linux kernel is the foundation of the Android platform.
- However, there are a few tweaks:

- binder - interprocess communication mechanism
- shmem - shared memory mechanism
- logger

- Android runtime:
- Runtime: A component provides functionality necessary for the execution

of a program.
E.g. scheduling, resource management, stack behavior, etc

- Prior to Android 5.0 (Dalvik):
- Each Android app has its own process, runs its own instance of

the Dalvik virtual machine (process virtual machine).
- The VM executes the Dalvik executable (.dex).
- The Dalvik virtual machine is register-based compared to

stack-based of a JVM.
- After Android 5.0 (ART):

- Backward compatible for running Dex bytecode.
- New feature - Ahead-Of-Time (AOT) compilation.
- Improved garbage collection.



CSCC69 Week 13 Notes
3

- Android process creation:
- All Android apps derive from a process called Zygote.
- Zygote is started as part of the init process.
- It preloads Java classes, resources, and starts the Dalvik VM.
- It registers a Unix domain socket.
- It waits for commands on the socket.
- It forks off child processes that inherit the initial state of VMs. It uses

Copy-on-Write only when a process writes to a page will a page be
allocated.

- Java API framework:
- The main Android OS from app point of view.
- It provides high-level services and environment to apps.
- It interacts with low-level libraries and Linux kernels.
- Some components:

- Activity Manager - manages the lifecycle of apps.
- Package Manager - keeps track of apps installed.
- Power Manager - wakelock APIs to apps.

- Native C/C++ libraries:
- Many core Android services are built from native code.
- They require native libraries written in C/C++.
- Some of them are exposed through the Java API framework as native

APIs such as the Java OpenGL API
- Android Binder IPC:

- Android Binder IPC allows communication among apps, between system
services, and between app and system service.



CSCC69 Week 13 Notes
4

- Binder is implemented as an RPC:
1. Developer defines methods and object interface in an .aidl file.
2. Android SDK generates a stub Java file for the .aidl file and exposes the

stub in a Service.
3. Developer implements the stub methods.
4. Client copies the .aidl file to its source.
5. Android SDK generates a stub (a.k.a proxy).
6. Client invokes the RPC through the stub.

- Binder information flow:

- OS Security:
- Protection:

- File systems implement a protection system:
- Who can access a file?
- How can they access it?

- A protection system dictates whether a given action performed by a given subject
on a given object should be allowed.
E.g. You can read and/or write your files, but others cannot.
E.g. You can read "/etc/motd", but you cannot write it.

- DAC vs MAC:
- DAC (Discretionary Access Control): Users define their own policy on their

own data.
- MAC (Mandatory Access Control): The administrator defines a system level

policy to control the propagation of data between users.
- DAC and MAC are not exclusive and can be used together.

- Discretionary Access Control:
- Unix protection on files:

- Each process has a User ID and one or more group IDs.
- The system stores the following with each file:

- The user who owns the file and the group the file is in.
- Permissions for users, any one in the file group, and other.

- This is shown by the output of the "ls -l" command.
- Unix protection on directories:

- Directories have permission bits, too.
- The write permission on a directory allows users to create or delete a file.
- The execute permission allows users to use pathnames in the directory.
- The read permission allows users to list the contents of the directory.
- The special user root (UID 0) has all privileges. It is required for

administration.



CSCC69 Week 13 Notes
5

- Unix permissions on non-files:
- Many devices show up in the file system.

E.g. /dev/tty1
- They have permissions just like for files. However, other access controls

are not represented in the file system.
E.g. You must usually be root to do the following:

- Bind any TCP or UDP port number less than 1024.
- Change the current process’s user or group ID.
- Mount or unmount most file systems.
- Create device nodes (such as /dev/tty1) in the file system.
- Change the owner of a file.
- Set the time-of-day clock; halt or reboot machine.

- Setuid:
- Some legitimate actions require more privileges than UID.

E.g. how users change their passwords stored in root-owned /etc/passwd
and /etc/shadow files?

- The solution is the setuid and setgid programs.
Run with privileges of the file's owner or group.
Each process has a real and effective UID/GID.
Real is a user who launched the setuid program.
Effective is the owner/group of the file, used in access checks.

- Have to be very careful when writing setuid code.
Attackers can run setuid programs any time (no need to wait for root to
run a vulnerable job).
Attacker controls many aspects of the program's environment.

- Unix security hole: Even without root or setuid attackers can trick root owned
processes into doing things.

- Mandatory Access Control:
- Mandatory access control (MAC) can restrict propagation.

E.g. A security administrator may allow you to read but not disclose the file.
- MAC prevents users from disclosing sensitive information whether accidentally or

maliciously.
E.g. Classified information requires such protection.

- MAC prevents software from surreptitiously leaking data. Seemingly innocuous
software may steal secrets in the background (Trojan Horse).


